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Abstract
Using an extension of the Parsons–Lee density-functional theory, we have
calculated the phase behaviour of mixtures of hard bodies, focusing on
the formation of smectic phases. The interactions are represented by hard
spherocylinders, and the mixtures have two components of lengths L1, L2

and widths D1, D2, respectively, with D1 = D2. The special case where
one of the components is a hard sphere (L1 = 0, L2 �= 0) is also studied.
Particular emphasis is put on the interplay between smectic-phase formation
and smectic–smectic segregation. In general, smectic–smectic segregation is
seen to occur in a wide range of compositions and pressures, except when the
length ratio q ≡ L1/L2 is relatively close to unity, i.e. particles have similar
lengths; in this case segregation appears only at high pressure. Finally, in
the case where q is very different from unity and the composition is such
that there is a small fraction of long molecules, even when the mixture is
macroscopically homogeneous, there appears a microsegregated phase where
the minority component is expelled to the interstitial regions between the
smectic layers.

1. Introduction

Since the last decade there has been an increasing interest in the phase behaviour of colloidal
liquid crystals. Here we will focus on a particular type of colloidal liquid crystal, namely a
fluid made up of particles with size in the range 1 nm–1 µm immersed in a molecular or atomic
fluid that are sufficiently anisotropic in shape to form liquid-crystalline phases similar to those
formed by many organic molecules. Also of interest are fluids formed by colloidal particles in
a host that itself may be a liquid crystal, typically a nematic fluid. In this latter case interesting
interaction effects between the colloidal particles can be mediated by the host fluid. This latter
system will not be considered in this work.
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Of particular interest are those colloidal liquid crystal mixtures formed by two components
that, when already in pure form, are capable of exhibiting liquid-crystalline phases. In their
pioneering work, Buining and Lekkerkerker [1] synthesized colloidal particles with anisotropic
shapes and conducted experimental verification of the predictions of computer simulation that
hard-core anisotropic particles exhibit a great variety of liquid crystal phases. They also
analysed the phase behaviour of mixtures of such colloidal particles, and showed that there
were interesting segregation effects interacting with liquid-crystal phase formation. These
findings were confirmed theoretically using the Onsager theory [2]. In particular, it was shown
that isotropic–isotropic segregation could be obtained for mixtures of hard spherocylinders
(HSPCs) of the same diameters. In further work [3–8] other groups have generalized the type
of mixtures, and nematic–nematic segregation has also been found.

Thus far very few studies have focused on the smectic phases that can result in these
systems. HSPCs are the type of interactions mostly considered in previous work on nematic
formation. But this model is known to exhibit smectic phases. It is then natural to ask ourselves
whether mixtures of anisotropic colloidal particles may in general show smectic phases in the
phase diagram, and if so what is the structure of these phases, i.e. the arrangement of the
particles to form smectic layers. The theoretical analysis of this problem has only been partly
undertaken so far. General considerations [9] indicate that the smectic order in mixtures
of hard rods will appear at higher pressures than in one-component systems since particles
of different lengths do not easily pack together to form well-defined layers. Stroobants [10]
performed Monte Carlo simulations to investigate columnar versus smectic order in mixtures of
parallel HSPCs of small length-to-width ratio and the same width, showing that the columnar
phase may preempt smectic formation. Koda and Kimura [11] used the Onsager theory to
make a stability analysis of the nematic phase of mixtures of parallel hard cylinders against
smectic fluctuations. The particles were taken to have the same width but different lengths.
Two types of smectic phase were found, one in which the layers are identical and contain
a mixture of both types of particles, and another in which layers with different composition
alternate. More recently, Koda et al [12] and Dogic et al [13] considered mixtures of HSPCs
and hard spheres (HSs)—the latter can be considered as an HSPC where the length of the
cylinder is zero. These studies were aimed at investigating the effect of adding spheres to
a fluid of spherocylinders; the main findings are that there is a strong segregation between
spherocylinders and spheres, and that sometimes the addition of a small number of spheres
may stabilize the smectic phase of HSPCs, in what can be considered to be associated to a
depletion mechanism. Segregation is associated with the formation of a microphase where
two-dimensional layers of spherocylinders and spheres appear alternated. Finally, van Roij and
Mulder [14] have studied a mixture of parallel cylinders using Onsager theory and a bifurcation
analysis. They analysed the conditions under which the nematic–nematic segregation spinodal
preempts the nematic–smectic and nematic–columnar spinodals, which occurs if the length
ratio is more extreme than 1:5.

All these studies have considered parallel HSPCs. Therefore, a number of important
questions remain regarding the effect of orientational order, the possible smectic structures
that a mixture can form, and the validity of the Onsager theory in the treatment of smectic
phases of mixtures of finite-length hard rods. In addition, all studies so far have been based on
stability analyses and bifurcation theory, and therefore the real topology of the phase diagram
and the true location of the binodal or coexistence lines associated with the phase transitions
have not been analysed.

In this paper we have investigated theoretically the phase behaviour of a number of mixtures
of HSPCs, using an extension of the classical Parsons–Lee (PL) theory. The theory has been
suitably modified so as to include the possibility of the formation of layered phases. Also, in



Entropic segregation in smectic phases of hard-body mixtures S2005

contrast to previous work, full orientational freedom is assumed for the particles, which allows
us to analyse the stability of different particle arrangements in the smectic layers, including
the possibility that particles may lie in the interstitials between the layers with perpendicular
orientation. The theory has been applied to binary mixtures of particles with different lengths
but the same width. As a special case, we also consider mixtures where one of the two
components is a HS. The results confirm previous findings for this latter system and, for general
HSPC mixtures, indicate a rich phase behaviour with smectic phases of different structures. For
mixtures with a large length ratio, the general behaviour involves a strong tendency for the two
components to segregate into two distinct smectic phases, meaning that HSPCs of different
lengths do not easily mix together to form a smectic structure. In this case, the smectic
phases that have been found to be stable contain a small amount of one of the components,
whose particles may tend to arrange in the interstitials between the layers formed by the other
component depending on whether or not the minority component corresponds to the longer
particles. This indicates that short particles in a smectic structure do not support long particles
with centres of mass located right in the layers, presumably because this configuration destroys
the smectic order, and microsegregated smectic phases are formed. The opposite situation, with
a small number of short particles in a smectic structure of long molecules, leads to a standard
smectic phase of identical layers with the same particle composition. Microsegregated smectic
phases with transverse particles in the interstitial regions between the layers have always been
observed to be metastable. As expected, mixtures with not so large length ratios also exhibit
the standard smectic phase. However, at high pressure there also appears smectic–smectic
segregation bounded by a lower critical point.

The paper is arranged as follows. In the next section we briefly introduce the model and
provide some technical details on the numerical treatment. In section 3.1 we show some results
pertaining to HSPC/HS mixtures, whereas in section 3.2 more general HSPC/HSPC mixtures
are considered. We end with a summary of our work and with some conclusions, which are
presented in section 4.

2. Theory and some computational details

2.1. Density-functional theory

We consider mixtures of general HSPCs, with lengths L1, L2 and widths D1, D2, but restrict our
calculations to the case D1 = D2. Our calculations are based on an extension of the PL theory
modified to include smectic phases. The PL theory is an improved Onsager theory, originally
intended to describe nematic order in otherwise pure,uniform liquids, i.e. the isotropic–nematic
transition. Onsager theory is a virial expansion of the excess free energy of the liquid, truncated
at second order in the density and, correspondingly, only includes correlations at the two-body
level. Although formally exact in the limit where the length-to-width ratio of the particles
tends to infinity and qualitatively correct in other cases, the results of the Onsager theory for
the coexistence parameters for moderately shaped particles are generally poor. This defect was
remedied in part by Parsons [15] and Lee [16], who devised a procedure to somehow resum the
virial series approximately to all orders in the density. The resulting PL theory considerably
improves on the results of the original Onsager theory. In the PL theory [16] the excess free
energy �F is written

�F[ f ] = �(η)

∫ ∫
dΩ̂ dΩ̂′ f (Ω̂)vexc(Ω̂, Ω̂′) f (Ω̂′) (1)

where f (Ω̂) is the one-particle orientational distribution function, and vexc(Ω̂, Ω̂′) is the
excluded volume associated with two particles oriented along the unit vectors Ω̂ and Ω̂′.
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The prefactor �(η) depends on the packing fraction η = ρ0v of the fluid, with ρ0 the mean
density and v the particle volume, and is the excess free energy corresponding to a fluid of
HSs with the same packing fraction as the actual liquid-crystal system. The HS system is used
as a reference system and, implicitly, the approximation inherent to the PL approach involves
approximating the virial coefficients of order higher than the second in terms of those of a fluid
of HSs.

The extension of the Onsager and PL theories to general mixtures is trivial. For two-
component mixtures we have to consider two orientational distribution functions, f1(Ω̂) and
f2(Ω̂), and three different interactions, given by excluded-volume functions v

(i j)
exc (Ω̂, Ω̂′),

i j = 11, 12, 22, together with a suitable reference system onto which to map the spatial
correlations. We define the composition of the mixture, x , to be the particle fraction for the
first component, x = ρ

(0)

1 /ρ0, with ρ0 = ρ
(0)

1 + ρ
(0)

2 , and ρ
(0)

1 , ρ
(0)

2 the mean densities of the
components. The packing fraction of the mixture is η = ρ1v1 + ρ2v2 = ρ0[xv1 + (1 − x)v2],
with v1 and v2 the corresponding particle volumes. Then, as a first approximation, one can
continue to use the same HS prefactor, which amounts to mapping the spatial correlations of
the mixture onto those of an averaged HS fluid. The resulting excess free energy functional is

�F[ f1, f2] = �(η)

∫ ∫
dΩ̂ dΩ̂′

2∑
i=1

2∑
j=1

{xi x j fi (Ω̂)v(i j)
exc (Ω̂, Ω̂′) f j (Ω̂′)}. (2)

The corresponding Onsager theory for the mixture would correspond to eliminating the density
prefactor and substituting it by a factor 1/2. Note that the density prefactor simply affects the
density range where the phase transitions appear, since the coupling between positions and
orientations, given through the excluded volume terms, is identical in both theories. Various
workers have used these approximations to study demixing transitions in hard-rod fluids.
Lekkerkerker et al [17] used Onsager theory to investigate the isotropic–nematic transition,
and found strong fractionation and reentrant phases in mixtures of hard rods of different lengths
and equal diameters. Later, other workers have found isotropic–isotropic and nematic–nematic
segregation in different mixtures [3–8] using Onsager theory.

However, both the Onsager and the PL theories do not explicitly include smectic phases,
i.e. layered phases where the density distribution of centres of mass is inhomogeneous and
show successive peaks separated by a distance of the order of the particle length. As a first step
in this direction one has to consider the one-particle distribution function ρ(r, Ω̂), and write a
density-functional free energy in terms of this new variable, which takes account of the spatial
correlations present in a smectic phase. For hard-core interactions the only presently available
theory that includes these effects is that formulated by Somoza and Tarazona (ST) [18], which
can be considered to be a sophisticated generalization of the PL approach. In this theory the
excess free energy is written as

�F[ f ] =
∫

dr
[
�PHE(ρ̄(r))

ρ̄PHE
0 (r)

] ∫
dr′

∫ ∫
dΩ̂ dΩ̂′ ρ(r, Ω̂) fo(r − r′, Ω̂, Ω̂′)ρ(r′, Ω̂′). (3)

Here ρ̄(r) and ρ̄0(r) are averaged densities over a volume of the order of the volume of a
properly chosen hard ellipsoid [19], and fo is the overlap function of two HSPCs. �PHE is
the excess free energy of a system of parallel hard ellipsoids. The latter system is used as a
reference system, since its free energy can be obtained exactly in terms of that of a fluid of hard
spheres through a trivial scaling transformation. The averaged densities are suitably weighted
using a set of weight functions obtained from corresponding density-functional theories for
HSs of the WDA type [20]. The above theory has been used successfully for HSPC systems
and other models and constitutes an ideal candidate for a study of mixtures. Nevertheless,
this extension to mixtures is not completely direct since it is not immediately obvious how
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Table 1. Comparison between coexistence data for the liquid-crystalline phase transitions in a
system of pure hard spherocylinders with aspect ratio L/D = 5. PL: extended Parsons–Lee theory
for smectics; MC: Monte Carlo data from [25]. Energy is in thermal energy units kT , and length
is in units of the particle width D.

L/D Theory PIN ρI ρN PNS ρN ρS

5.0 PL 1.236 0.090 0.095 1.620 0.105 0.109
MC 1.117 0.089 0.089 1.438 0.102 0.108

the reference system should be chosen. Preliminary calculations with a simple version of the
theory that uses an effective pure fluid of parallel hard ellipsoids did not provide physically
sensible phases.

Faced with these problems, and before tackling the task of formulating a more complete
theory of smectic phase in mixtures of hard-core fluids (either using a more elaborate ST
approach or the more sophisticated fundamental-measure theory, still poorly developed for
anisotropic hard bodies [21]), we have used a direct generalization of the PL theory to
include the spatial structure. First, the one-particle distribution functions are written as
ρi (r, Ω̂) = ρi(r) fi (r, Ω̂), i = 1, 2, where ρi (r) are the number densities associated with
the particle centres of mass, and the excess free-energy functional used is

�F[ρ1, ρ2] = �(η)

∫ ∫ ∫ ∫
dr dr′ dΩ̂ dΩ̂′

2∑
i=1

2∑
j=1

× {ρi (r, Ω̂) f (i j)
o (r − r′; Ω̂, Ω̂′)ρ j (r′Ω̂′)}. (4)

Here f (i j)
o (r; Ω̂, Ω̂′) are the overlap functions of the three different interactions (unity if

particles overlap and zero otherwise).
The above model, though certainly non-local, is not sufficiently non-local that, a priori, one

could expect the highly correlated structure of a smectic phase to be accurately reproduced.
However, the Onsager version (without the density prefactor) has been seen to reproduce
a variety of aspects of the nematic–smectic transition in a pure HSPC fluid, albeit in a
qualitative way—see, for example, [22–24]. The extended PL version provides nematic–
smectic coexistence parameters with surprising accuracy (as is the case with the ST theory, the
model reduces to the PL theory for a spatially uniform fluid so the coexistence parameters for
the isotropic–nematic transition remain unaltered). Table 1 contains the coexistence densities
and nematic order parameters for nematic and smectic phases for a one-component fluid of
HSPCs with aspect ratio L/D = 5. Monte Carlo data extracted from [25] are included for
comparison. The agreement is very reasonable even though, in principle, this value of the
aspect ratio is relatively small for the PL theory to be accurate. Figure 1 shows the smectic
density distributions from the extended PL theory and the ST theory for the smectic phase that
coexists with the nematic. Although the smectic structure is softer, which can be understood
in terms of the lack of non-local structure in the extended PL theory, the coexistence data
are relatively well reproduced. It appears that the model qualitatively describes the smectic
structure in the one-component fluid and reasonably describes the nematic–smectic transition.
Therefore, it is expected that, with due caution, the results of the extended theory for mixtures
can give at least qualitative trends as to what phase behaviour should be exhibited by these
systems.

The final ingredient of the model is the ideal free energy, which is exactly given by

Fid[ρ1, ρ2] = kT
2∑

i=1

∫ ∫
dr dΩ̂ρi (r, Ω̂)[log ρi (r, Ω̂) − 1]. (5)
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Figure 1. Number density distribution for the coexisting smectic phase at the nematic–smectic
phase transition for hard spherocylinders with length-to-width ratio L/D = 5. Continuous curve:
ST theory. Dashed curve: extended PL theory. z is the coordinate along the director.

In terms of the local fractions x1(r), x2(r),

xi(r) = ρi (r)
ρ(r)

, i = 1, 2, x1(r) + x2(r) = 1 (6)

and the total density distribution

ρ(r) = ρ1(r) + ρ2(r) (7)

the ideal free energy can be written as

Fid[ρ1, ρ2] = kT
∫

dr ρ(r)
{

log
ρ(r)
4π

− 1 +
2∑

i=1

xi(r) log xi(r)

+
2∑

i=1

xi(r)
∫

dΩ̂ fi (r, Ω̂) log [4π fi (r, Ω̂)]

}
. (8)

Inside the curly brackets we recognise the translational entropy, entropy of mixing, and
rotational entropies, with a global minus sign.

2.2. Some approximations and computational details

Before we briefly describe the numerical implementation of the above density functional, we
mention some simplifications and approximations used. First, since the system is layered
along the direction imposed by the director (which we take along the ẑ direction), all
distribution functions depend only on the coordinate z. Next, we have assumed that the
orientational distribution functions do not depend on the z coordinate: fi (z, Ω̂) = fi (Ω̂).
This approximation amounts to considering the nematic order parameter to be everywhere the
same, i.e. that the spatial and orientational degrees of freedom are decoupled at the level of the
one-particle distribution function. For a one-component smectic this approximation is exact
in the limits of vanishing smectic order and complete smectic order, respectively. In between
these limits the ST theory has shown that the approximation is very reasonable, and that it has
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a negligible impact on the structure and thermodynamic properties of the smectic fluid [19]5.
With these two simplifications, the excess free energy for the mixture is

�F([ρ1, ρ2]; s1, s2)

V
= �(η)

d

∫ d

0
dz

2∑
i=1

2∑
j=1

ρi (z)v
(i j)
eff (z − z′; s1, s2)ρ j (z

′) (9)

where V is the system volume,

v
(i j)
eff (z; si , s j ) ≡

∫ ∫
dΩ̂ dΩ̂′ fi (Ω̂)

[∫
dR f (i j)

o (R, z; Ω̂, Ω̂′)
]

f j (Ω̂′) (10)

are effective potentials, and R are coordinates perpendicular to z, i.e. r = (R, z). d is the
smectic period. In (10) the kernel between squared brackets is calculated numerically. We
have introduced (uniform) nematic order parameters si for each component. The orientational
distribution functions are parameterized in terms of a single parameter �i :

fi (Ω̂; �i) = e�i P2(cos θ)∫
dΩ̂ e�i P2(cos θ)

(11)

where P2(cos θ) is a Legendre polynomial, and θ is the particle polar angle. The parameter
�i can be obtained from the nematic order parameter si through the definition of the latter by
inversion of the function si (�i):

si (�i ) =
∫

dΩ̂ fi (Ω̂; �i)P2(cos θ). (12)

Most of the calculations have been performed using the following approximation to evaluate
the cross effective potential:

v
(12)

eff (z; s1, s2) ≈ v̄
(12)

eff (z, s̄) ≡
∫

dΩ̂ dΩ̂′ f1(Ω̂; s̄)

[∫
dR f (12)

o (R, z; Ω̂, Ω̂′)
]

f2(Ω̂′; s̄) (13)

which involves an averaged nematic order parameter s̄,

s̄ ≡ s1 + s2

2
. (14)

We have checked that, for phases where all particles point on average along the same direction,
this approximation is numerically very accurate. Also, it is computationally very convenient,
since it considerably reduces the numerical burden associated with the free-energy calculations.
When searching for phases with transverse particles lying in the interstitial regions, this
approximation is obviously not correct; in these cases we used the complete expression. For
the other phases all calculations were done using the approximation.

Finally, we need to specify a parameterization for the density distributions. A valid
parameterization should reflect the structure of the lowest-order smectic structure that is to
be expected in the mixture, which consists of alternating layers, each of them rich in one of
the two components, which we will denote by S2. A parameterization satisfying this criterion
with a minimum set of parameters is

ρi (z) = ρ
(0)
i

exp
(
λi cos

(
2π z

d

))
I0(λi)

(15)

where I0(x) is the modified Bessel function of order 0 which ensures a proper normalization
for the density distribution. For a S2 phase this parameterization assumes that each of the

5 Use of the decoupling approximation changes the coexistence densities by less than 0.2% for L/D = 5. Note that
this is not inconsistent with the finding by van Roij et al [24] that there is a strong modulation of the orientational
distribution function of HPSC in the smectic phase; for a discussion see [19].
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Figure 2. Pressure-composition phase diagram for a HSPC/HS mixture with spherocylinder length
L2 = 7D (the diameter of the spheres are the same as the width of the spherocylinders, D).
I (isotropic), N (nematic) and S2 phases are shown. The shaded regions indicate two-phase regions.
The drawing shows the structure of the S2 phase schematically.

layers consists of a single component; the two components are out of phase, with different
signs for the corresponding λs. For a standard smectic, which will be denoted by S, the layers
are identical and contain a varying composition depending on x . The λs for the S phase have
the same signs.

All calculations have been performed in the Gibbs ensemble by minimizing the Gibbs free
energy G = F + PV with respect to the parameters

ρ0, λ1, λ2, s1, s2, d (16)

with pressure P and composition x kept fixed.

3. Results

In this section we present the results for different mixtures, always considering the case
D1 = D2 = D. All the lengths in the results are given in units of D. Since we are mostly
interested in smectic formation, mixtures have generally been chosen to be composed of
particles with low length ratios in order to avoid nematic–nematic segregation [26]. We begin
by considering the special mixtures consisting of HSPCs and HSs.

3.1. Mixtures of HSPCs and HSs

In the case where one of the components consists of HSs, say L1 = 0, the corresponding
orientational distribution function is constant, and the nematic order parameter can be set to
zero. The parameter space is therefore reduced by one parameter. Figure 2 shows the pressure
(P)-composition (x) phase diagram for the case L2 = 7. Three phases are found: I (isotropic),
N (nematic) and S2 (smectic). The latter consists of layers of HSPC particles alternating with
layers of spheres (this phase has been called the lamellar microphase by Dogic et al [13] and
was first predicted by Koda et al [12]). It is interesting to note the large amount of spheres that
the smectic phase can support before phase separation (up to ∼60% in composition; naturally
this corresponds to a low partial packing fraction of spheres, approximately 0.05). In [13]
the stability of this phase is explained in terms of excluded volume arguments. It suffices to
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Figure 3. Pressure–composition phase diagram for a HSPC/HSPC mixture with lengths L1 = 5D
and L2 = 7D. I (isotropic), N (nematic) and S (smectic) phases are shown. The shaded regions
indicate two-phase regions.

say that the S2 phase seems to be the only stable smectic that can be formed in this mixture,
since HSPC–HS interactions make the smectic arrangement into identical layers very unlikely
with respect to arrangement into the S2 phase structure. The phase diagram features a triple
point where N, I and S2 phases coexist. It also contains a small region of N stability; note that
addition of spheres stabilizes the N phase with respect to the S2 phase. This latter phenomenon
has been discussed in previous work for parallel hard rods. In [12, 13] Onsager theory was
used to show that for sufficiently long particles addition of HSs can enhance the stability of the
smectic phase, whereas below some critical ratio the effect is the opposite. The mixture that
we have analysed is clearly below this critical ratio. Finally, we have observed that the smectic
period increases with respect to the one-component smectic phase of the same total packing
fraction when a small number of HSs is added to the fluid. This is not surprising since, as we
have mentioned above, the HSs place themselves in the interstitial regions between the HSPC
layers, pushing these layers apart.

3.2. Mixtures of HSPCs

Figure 3 presents the P–x phase diagram for the mixture L1 = 5, L2 = 7, which has q = 0.71.
Both species, when in pure form, have nematic phases and a region of nematic stability covers
the whole composition range. This mixture consists of particles sufficiently similar in length
that a standard smectic phase S also forms in the whole composition range. Figure 4(a) shows
the density profiles of both species for a mixture with pressure P D3/kT = 2 and composition
x5.0 = 0.5. The nematic–smectic transition shows an azeotropic point, indicated by a large full
circle, where both phases have the same composition. At high pressure there appears a region
of smectic–smectic segregation, bounded by a lower critical point. This highly asymmetric
region is clearly displaced toward high values of composition, meaning that a smectic phase
made by short particles does not easily accommodate long particles and tends to segregate into
two phases: one with a similar concentration of both species, and the other almost exclusively
composed of short particles.

The case L1 = 3.5, L2 = 7 (q = 0.5) is shown in figure 5. In this case the mixture
is more asymmetric and there is a dramatic change in phase behaviour with respect to the
previous case. Since the first component does not have a nematic phase, the nematic region
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Figure 4. Density profiles for the two species making up the mixture in the smectic phase.
(a) Mixture with L1 = 5D, L2 = 7D at pressure P D3/kT = 2 and composition x5.0 = 0.5;
continuous line: profile for component 1; dashed line: profile for component 2. (b) Mixture with
L1 = 3.5D, L2 = 7D at pressure P D3/kT = 3 and composition x3.5 = 0.95; continuous line:
profile for component 1; dashed line: profile for component 2.

does not reach the x = 1 axis. The isotropic–nematic transition shows a typical loop structure
at intermediate compositions. But the most interesting feature of the phase diagram is the
strong fractionation shown by the smectic phase, which extends to relatively low pressures
and even preempts the nematic phase. Smectic stability is constrained to small and large
compositions, and in each case the structure of the smectic phase has a different nature. For low
compositions the smectic phase is a standard S smectic, with a small amount of short particles
mixed in the smectic layers formed by the long particles, which can support up to ∼15% of
short particles. At high composition the smectic phase, denoted by S‖

2 in figure 5, shows a
microsegregation phenomenon: long particles are expelled to the interstitial regions between
the layers formed by the short particles. This process tends to make the cross excluded volume
decrease, thereby increasing the entropy. Particles in the interstitials always point along the
director; configurations with particles lying in transverse directions have never been observed
to be thermodynamically stable. This statement is based on calculations performed using the
full effective potential for the cross interaction, which depends separately on the two nematic
order parameters. The approximation embodied in equation (13) is not appropriate when
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Figure 5. Pressure–composition phase diagram for a HSPC/HSPC mixture with lengths L1 = 3.5D
and L2 = 7D. I (isotropic), N (nematic), S (smectic) and S2 phases are shown. The shaded regions
indicate two-phase regions.

searching for a S2 phase with transverse particle orientations in the interstitials, in which case
s1 and s2 have different signs and the angle-averaged excluded area at a height z, equation (10),
cannot be obtained using an average nematic order parameter. Figure 4(b) shows the density
profiles of both species corresponding to a mixture at pressure P D3/kT = 3 and composition
x3.5 = 0.95. In this case the mixture consists of only 5% of long particles, which are arranged
out of phase with respect to the smectic layers formed by the particles of the other component.

An interesting question concerns the behaviour of the smectic period of the mixture with
respect to the values adopted in the one-component smectics. In the case of the S phase the
addition of a small amount of short particles makes the smectic period increase with respect
to the one-component smectic phase of the same packing fraction. This effect may be related
to an increase of the packing fraction in the layers, which is compensated by an increase in
the smectic period. Note that this mechanism is different from that operating in the case of
the HSPC/HS mixture, which may be related to the different smectic structure. For the S2

phase the smectic period of the mixture decreases with respect to the pure smectic. All these
results are to be taken with due care, since they depend on a subtle free-energy balance that
our simplified model may not be capturing properly. Therefore, checking these predictions
against computer simulation would be interesting. Work along this avenue is in progress in
our group.

4. Discussion

In this work we have analysed the phase behaviour of different mixtures of HSPCs, putting
emphasis on the smectic phases. When the length ratio q of the particles is sufficiently close
to unity the system phase separates at high pressure into two smectic phases of different
compositions but the same structure, which corresponds to standard smectic layers of the same
composition. The smectic–smectic segregation transition is bounded by a lower critical point.
In contrast, for length ratios quite different from unity, strong segregation in smectic phases is
found. The system separates into two smectic phases of a different nature, with one of them
exhibiting microsegregation. All these features are predicted using a theoretical model, an
extended PL theory, that contains excluded-volume interactions exclusively.
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Another point which deserves some comment is the possibility that the columnar phase can
stabilize at the pressures where the smectic phase dominates the phase diagram according to
the present theory. The work by Stroobants [10] indicates that polydispersity generally induces
columnar order. However, this simulation work assumes parallel particles, while orientational
disorder may penalise the columnar order with respect to the smectic order. Also, the range
of compositions explored in [10] is around 0.5, while the smectic phases obtained in our work
occur for low and high compositions. It is important to remember, in addition, that the one-
component fluid of HSPCs with freely orienting particles does not show columnar stability.
On the other hand, we may be certain that the solid phase will modify the high-pressure region
of the phase diagram significantly. Although the crystal phases of the mixtures considered in
this work have not been explored either by the present theoretical approach or by simulation,
we believe that the smectic phases predicted here will not be preempted by the solid phase and,
therefore, will be stable in some region of the phase diagram6. Naturally in order to elucidate
this point further work will be needed.
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